Glassy dynamics in monodisperse hard ellipsoids
نویسندگان
چکیده
منابع مشابه
Crystallization in glassy suspensions of hard ellipsoids.
We have carried out computer simulations of overcompressed suspensions of hard monodisperse ellipsoids and observed their crystallization dynamics. The system was compressed very rapidly in order to reach the regime of slow, glass-like dynamics. We find that, although particle dynamics become sub-diffusive and the intermediate scattering function clearly develops a shoulder, crystallization pro...
متن کاملDynamics of uniaxial hard ellipsoids.
We study the dynamics of monodisperse hard ellipsoids via a new event-driven molecular dynamics algorithm as a function of volume fraction phi and aspect ratio X0. We evaluate the translational D(trans) and the rotational D(rot) diffusion coefficients and the associated isodiffusivity lines in the phi-X0 plane. We observe a decoupling of the translational and rotational dynamics which generates...
متن کاملMicroscopic Dynamics of Hard Ellipsoids in Their Liquid and Glassy Phase
To investigate the influence of orientational degrees of freedom onto the dynamics of molecular systems in its supercooled and glassy regime we have solved numerically the mode-coupling equations for hard ellipsoids of revolution. For a wide range of volume fractions φ and aspect ratios x0 we find an orientational peak in the center of mass spectra χ ′′ 000(q, ω) and φ ′′ 000(q, ω) about one de...
متن کاملDynamical facilitation governs glassy dynamics in suspensions of colloidal ellipsoids.
One of the greatest challenges in contemporary condensed matter physics is to ascertain whether the formation of glasses from liquids is fundamentally thermodynamic or dynamic in origin. Although the thermodynamic paradigm has dominated theoretical research for decades, the purely kinetic perspective of the dynamical facilitation (DF) theory has attained prominence in recent times. In particula...
متن کاملNonequilibrium glassy dynamics of self-propelled hard disks.
We analyze the collective dynamics of self-propelled particles in the large-density regime where passive particles undergo a kinetic arrest to an amorphous glassy state. We capture the competition between self-propulsion and crowding effects using a two-dimensional model of self-propelled hard disks, which we study using Monte Carlo simulations. Although the activity drives the system far from ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: EPL (Europhysics Letters)
سال: 2008
ISSN: 0295-5075,1286-4854
DOI: 10.1209/0295-5075/84/49901